On the Topology of Generalized Semi-Infinite Optimization
نویسنده
چکیده
This survey article reflects the topological and inverse behaviour of generalized semi-infinite optimization problems P(f, h, g, u, v), and presents the analytical methods. These differentiable problems admit an infinite set Y (x) of inequality constraints y which depends on the state x. We extend investigations from Weber [77] based on research of Guddat, Jongen, Rückmann, Twilt and others. Under suitable assumptions on boundedness and qualifying conditions on lower y-stage and upper x-stage, we present manifold, continuity and global stability properties of the feasible set M [h, g, u, v] and corresponding structural stability properties of P(f, h, g, u, v), referring to slight data perturbations. Hereby, the character of our investigation is essentially specialized by the linear independence constraint qualification locally imposed on Y (x). The achieved results are important for algorithm design and convergence. Two extensions refer to unboundedness and nondifferentiable max-min-type objective functions. In the course of explanation, the perturbational approach gives rise to study inverse problems of reconstruction. We trace them into optimal control of ordinary differential equations, and indicate related investigations in heating processes, continuum mechanics and discrete tomography. Throughout the article, we realize discrete-combinatorial aspects and methods.
منابع مشابه
A New Approach for Approximating Solution of Continuous Semi-Infinite Linear Programming
This paper describes a new optimization method for solving continuous semi-infinite linear problems. With regard to the dual properties, the problem is presented as a measure theoretical optimization problem, in which the existence of the solution is guaranteed. Then, on the basis of the atomic measure properties, a computation method was presented for obtaining the near optimal so...
متن کاملConvex Generalized Semi-Infinite Programming Problems with Constraint Sets: Necessary Conditions
We consider generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be convex. Considering a lower level constraint qualification, we derive a formula for estimating the subdifferential of the value function. Finally, we establish the Fritz-John necessary optimality con...
متن کاملGeneralized Semi-Infinite Programming: Numerical aspects
Generalized semi-infinite optimization problems (GSIP) are considered. It is investigated how the numerical methods for standard semi-infinite programming (SIP) can be extended to GSIP. Newton methods can be extended immediately. For discretization methods the situation is more complicated. These difficulties are discussed and convergence results for a discretizationand an exchange method are d...
متن کاملA conceptual method for solving generalized semi-infinite programming problems via global optimization by exact discontinuous penalization
We consider a generalized semi-infinite programming problem (GSIP) with one semi-infinite constraint where the index set depends on the variable to be minimized. Keeping in mind the integral global optimization method of Zheng & Chew and its modifications we would like to outline theoretical considerations for determining coarse approximations of a solution of (GSIP) via global optimization of ...
متن کاملSolving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks
Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints. In this paper, to solve this problem, we combine a discretization method and a neural network method. By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem. Then, we use...
متن کاملOn the Use of Augmented Lagrangians in the Solution of Generalized Semi-Infinite Min-Max Problems
We present an approach for the solution of a class of generalized semi-infinite optimization problems. Our approach uses augmented Lagrangians to transform generalized semi-infinite min-max problems into ordinary semi-infinite min-max problems, with the same set of local and global solutions as well as the same stationary points. Once the transformation is effected, the generalized semi-infinit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002